Acta Cryst. (1994). C50, 1651-1652

Structure of a $Y_{1-x}(Gd, Dy, Er)_x PO_4.2H_2O$ Microcrystal Using Synchrotron Radiation

MONIKA KOHLMANN, HEIDRUN SOWA, KLAUS REITHMAYER AND HEINZ SCHULZ

Institut für Kristallographie und Mineralogie, Universität München, Theresienstrasse 41, D-80333 München, Germany

ROLF-RÜDIGER KRÜGER

Institut für Anorganische Chemie und SFB 173 der Universität, Callinstrasse 9, D-30167 Hannover, Germany

WALTER ABRIEL

AWHchemconsult, Weilheimerstrasse 15, D-81373 München, Germany

(Received 12 March 1993; accepted 21 January 1994)

Abstract

The gypsum-type structure of the title compound, weinschenkite [churchite(Y)], is confirmed. The H-atom positions could not be located. The structures of gypsum [Cole & Lancucki (1974). Acta Cryst. B**30**, 921– 929], CaSeO₄.2H₂O [Krüger & Abriel (1991). Acta *Cryst.* C47, 1958–1959] and weinschenkite are isotypic. However, the temperature of dehydration of these phases is different and can be correlated to the strength of the hydrogen bonds. The minimum distance between water O and phosphate O atoms is considered to be a measure of this strength. The mean length of the hydrogen bonds decreases with increasing temperature of dehydration, from gypsum (2.856 Å) to CaSeO₄.2H₂O (2.845 Å) and weinschenkite (2.726 Å); hence the strength of the hydrogen bonds increases.

Comment

The single-crystal structure refinement of weinschenkite was undertaken in order to obtain more accurate structural information about bond lengths. The structure is shown in Fig. 1. A projection plot of the isotypic gypsum-type structure is given elsewhere (Cole & Lancucki, 1974).

It was not possible to grow $YPO_4.2H_2O$ crystals large enough for single-crystal investigations (Krüger, 1991), therefore, a small powder grain of the natural mineral weinschenkite was selected and prepared by the microcrystal method of Rieck, Euler, Schulz & Schildkamp (1988). Because of the small crystal volume (2450 μ m³) and scattering power, synchrotron radiation was required for the structure determination.

A discussion of the structural relationships between gypsum, $CaSeO_4.2H_2O$ and weinschenkite will be published in due course (Krüger & Abriel, 1994).

Fig. 1. Structure of $Y_{1-x}(Gd,Dy,Er)_xPO_4.2H_2O$ projected along [001]. Thermal vibration ellipsoids are drawn at the 50% level. The numbers below the element symbols represent the fractional height along c. The PO₄ tetrahedra are depicted with 'open' bonds. The broken lines show the coordination of Y^{3+} and the fine lines indicate the $O(W) \cdots O(1)$ distances that represent the hydrogen bonds.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Crystallographica Section C ISSN 0108-2701 ©1994

Experimental

The crystal was prepared from material obtained from Auerbach, Oberpfalz, Bavaria, Germany.

Crystal data

Y _{0.947} Dy _{0.028} Er _{0.018} Gd _{0.007} -	Synchrotron radiation
PO ₄ .2H ₂ O	$\lambda = 0.9998 \text{ Å}$
$M_r = 223.85$	Cell parameters from 33
Monoclinic	reflections
I_2/a	$\theta = 9.5 - 24^{\circ}$
a = 5.578 (1) Å	$\mu = 15.48 \text{ mm}^{-1}$
b = 15.006 (3) Å	T = 293 K
c = 6.275 (2) Å	Needle
$\beta = 117.83 \ (2)^{\circ}$	$0.1130 \times 0.0054 \times$
V = 464.5 (2) Å ³	0.0040 mm
Z = 4	Colourless
$D_x = 3.20 \text{ Mg m}^{-3}$	

Data collection

Stoe five-circle (HASYLAB)	$R_{\rm int} = 0.083$
diffractometer	$\theta_{\rm max} = 49.9^{\circ}$
Profile data from ω	$h = -7 \rightarrow 8$
scans (0.02° steps, 95	$k = 0 \rightarrow 21$
steps/reflection, 1.5 s/step)	$l = -9 \rightarrow 8$
Absorption correction:	1 standard reflection
analytical	frequency: 45 min
$T_{\rm min} = 0.45, \ T_{\rm max} = 0.93$	intensity variation: 3.3%
1335 measured reflections	
743 independent reflections	
637 observed reflections	
$[F > 3.0\sigma(F)]$	

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 1.8 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.077	$\Delta \rho_{\rm min} = -2.4 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.052	Extinction correction: Type 1
S = 1.742	Gaussian isotropic (Becker
644 reflections	& Coppens, 1974)
39 parameters	Extinction coefficient: 15080
H-atom parameters not	Atomic scattering factors
refined	from International Tables
$w = 1/\sigma^2(F)$	for X-ray Crystallography
$(\Delta/\sigma)_{\rm max} < 0.001$	(1974, Vol. IV, Table
	2.4.6B)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
Y	1/4	0.8289(1)	0	0.0059 (5)
Р	1/4	0.3307 (3)	0	0.013(1)
01	0.302(1)	0.3857 (5)	0.224 (1)	0.020(3)
02	0.506(1)	0.2714 (5)	0.084(1)	0.015 (3)
O3	0.630(2)	0.0680 (5)	0.218(1)	0.022 (4)

Table 2. Selected geometric parameters (Å, °)

Y-01 ⁱ	2,434 (6)	01—02 ⁱⁱⁱ	2.56(1)
Y-02 ⁱⁱ	2.251 (6)	01—01 ⁱⁱⁱ	2.59(1)
Y—O2 ⁱ	2.470 (7)	01—03 ^{iv}	2.690 (7)
Y—03 ⁱⁱ	2.360 (7)	01—03 ⁱ	2.76(1)
P01	1.536 (8)	O2—O2 ⁱⁱⁱ	2.547 (7)

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved

P—02	1.550 (6)	02—02 ^v	2.622 (7)
01—02	2.44 (1)	02—01 ¹¹¹	2.56(1)
01—P—01 ⁱⁱⁱ	115.0 (5)	O1—P—O2	104.3 (4)
O2—P—O2 ⁱⁱⁱ	110.0 (4)	O1—P—O2 ⁱⁱⁱ	111.7 (3)
Symmetry codes: (i) $1 - x, \frac{1}{2} + y$	$\frac{1}{2} - z$; (ii) $1 - x$, 1	-y, 1-z; (iii)
$\frac{1}{2}$ -x, y, -z; (iv	$\frac{1}{2} - x, \frac{1}{2} - y$	$\frac{1}{2}, \frac{1}{2}-z; (v) \frac{3}{2}-x, \frac{1}{2}$	$-y, \frac{1}{2}-z.$

Data collection and cell refinement: *DIF4* (Stoe & Cie, 1985). Data reduction: local program; *SHELX76* (Sheldrick, 1976). Program(s) used to solve structure: *PROMETHEUS* (Zucker, Perenthaler, Kuhs, Bachmann & Schulz, 1983). Program(s) used to refine structure: *PROMETHEUS*.

This investigation was supported by the Ministry of Research and Technology of Germany under number 05464IBB9. Samples were kindly supplied by R.-R. Krüger.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: NA1039). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.
- Cole, W. F. & Lancucki, C. J. (1974). Acta Cryst. B30, 921-929.
- Krüger, R.-R. (1991). Private communication.
- Krüger, R.-R. & Abriel, W. (1991). Acta Cryst. C47, 1958-1959.
- Krüger, R.-R. & Abriel, W. (1994). In preparation.
- Rieck, W., Euler, H., Schulz, H. & Schildkamp, W. (1988). Acta Cryst. A44, 1099-1101.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Stoe & Cie (1985). DIF4. Diffractometer Control Program. Version 5.1. Stoe & Cie, Darmstadt, Germany.
- Zucker, U. H., Perenthaler, E., Kuhs, W. F., Bachmann, R. & Schulz, H. (1983). J. Appl. Cryst. 16, 358.

Acta Cryst. (1994). C50, 1652-1655

NaVSi₂O₆

Haruo Ohashi, Toshikazu Osawa and Akira Sato

National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, Japan

(Received 21 July 1993; accepted 25 April 1994)

Abstract

The structure of sodium vanadium metasilicate, NaVSi₂O₆, has been determined from diffractometer data. The structure is similar to that of jadeite (NaAlSi₂O₆). Comparison of a new crystal structure refinement for NaVSi₂O₆ with published refinements for ten Na M^{3+} Si₂O₆ pyroxenes indicates that the O1—Si—